10 research outputs found

    Latency Requirements for Head-Worn Display S/EVS Applications

    Get PDF
    NASA s Aviation Safety Program, Synthetic Vision Systems Project is conducting research in advanced flight deck concepts, such as Synthetic/Enhanced Vision Systems (S/EVS), for commercial and business aircraft. An emerging thrust in this activity is the development of spatially-integrated, large field-of-regard information display systems. Head-worn or helmet-mounted display systems are being proposed as one method in which to meet this objective. System delays or latencies inherent to spatially-integrated, head-worn displays critically influence the display utility, usability, and acceptability. Research results from three different, yet similar technical areas flight control, flight simulation, and virtual reality are collectively assembled in this paper to create a global perspective of delay or latency effects in head-worn or helmet-mounted display systems. Consistent definitions and measurement techniques are proposed herein for universal application and latency requirements for Head-Worn Display S/EVS applications are drafted. Future research areas are defined

    Synthetic Vision for Lunar and Planetary Landing Vehicles

    Get PDF
    The Crew Vehicle Interface (CVI) group of the Integrated Intelligent Flight Deck Technologies (IIFDT) has done extensive research in the area of Synthetic Vision (SV), and has shown that SV technology can substantially enhance flight crew situation awareness, reduce pilot workload, promote flight path control precision and improve aviation safety. SV technology is being extended to evaluate its utility for lunar and planetary exploration vehicles. SV may hold significant potential for many lunar and planetary missions since the SV presentation provides a computer-generated view of the terrain and other significant environment characteristics independent of the outside visibility conditions, window locations, or vehicle attributes. SV allows unconstrained control of the computer-generated scene lighting, terrain coloring, and virtual camera angles which may provide invaluable visual cues to pilots/astronauts and in addition, important vehicle state information may be conformally displayed on the view such as forward and down velocities, altitude, and fuel remaining to enhance trajectory control and vehicle system status. This paper discusses preliminary SV concepts for tactical and strategic displays for a lunar landing vehicle. The technical challenges and potential solutions to SV applications for the lunar landing mission are explored, including the requirements for high resolution terrain lunar maps and an accurate position and orientation of the vehicle that is essential in providing lunar Synthetic Vision System (SVS) cockpit displays. The paper also discusses the technical challenge of creating an accurate synthetic terrain portrayal using an ellipsoid lunar digital elevation model which eliminates projection errors and can be efficiently rendered in real-time

    Toward Head-Worn Displays for Equivalent Visual Operations

    Get PDF
    The Next Generation Air Transportation System represents an envisioned transformation to the U.S. air transportation system that includes an "equivalent visual operations" (EVO) concept, intended to achieve the safety and operational tempos of Visual Flight Rules (VFR) operations independent of visibility conditions. Today, Federal Aviation Administration regulations provide for the use of an Enhanced Flight Visual System (EFVS) as "operational credit" to conduct approach operations below traditional minima otherwise prohibited. An essential element of an EFVS is the Head-Up Display (HUD). NASA has conducted a substantial amount of research investigating the use of HUDs for operational landing "credit", and current efforts are underway to enable manually flown operations as low as 1000 feet Runway Visual Range (RVR). Title 14 CFR 91.175 describes the use of EFVS and the operational credit that may be obtained with airplane equipage of a HUD combined with Enhanced Vision (EV) while also offering the potential use of an equivalent display in lieu of the HUD. A Head-Worn Display (HWD) is postulated to provide the same, or better, safety and operational benefits as current HUD-equipped aircraft but for potentially more aircraft and for lower cost. A high-fidelity simulation was conducted that examined the efficacy of HWDs as "equivalent" displays. Twelve airline flight crews conducted 1000 feet RVR approach and 300 feet RVR departure operations using either a HUD or HWD, both with simulated Forward Looking Infra-Red cameras. The paper shall describe (a) quantitative and qualitative results, (b) a comparative evaluation of these findings with prior NASA HUD studies, and (c) describe current research efforts for EFVS to provide for a comprehensive EVO capability

    A Review of Head-Worn Display Research at NASA Langley Research Center

    Get PDF
    NASA Langley has conducted research in the area of helmet-mounted/head-worn displays over the past 30 years. Initially, NASA Langley's research focused on military applications, but recently it has conducted a line of research in the area of head-worn displays for commercial and business aircraft. This work has revolved around numerous simulation experiments as well as flight tests to develop technology and data for industry and regulatory guidance. The paper summarizes the results of NASA's helmet-mounted/head-worn display research. Of note, the work tracks progress in wearable collimated optics, head tracking, latency reduction, and weight. The research lends credence that a small, sunglasses-type form factor of the head-worn display would be acceptable to commercial pilots, and this goal is now becoming technologically feasible. The research further suggests that a head-worn display may serve as an "equivalent" Head-Up Display (HUD) with safety, operational, and cost benefits. "HUD equivalence" appears to be the economic avenue by which head-worn displays can become main-stream on the commercial and business aircraft flight deck. If this happens, NASA's research suggests that additional operational benefits using the unique capabilities of the head-worn display can open up new operational paradigms

    Flight Deck Technologies to Enable NextGen Low Visibility Surface Operations

    Get PDF
    Many key capabilities are being identified to enable Next Generation Air Transportation System (NextGen), including the concept of Equivalent Visual Operations (EVO) . replicating the capacity and safety of today.s visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual operational concept. This operational concept envisions an .equivalent visual. paradigm where an electronic means provides sufficient visual references of the external world and other required flight references on flight deck displays that enable Visual Flight Rules (VFR)-like operational tempos while maintaining and improving safety of VFR while using VFR-like procedures in all-weather conditions. The Langley Research Center (LaRC) has recently completed preliminary research on flight deck technologies for low visibility surface operations. The work assessed the potential of enhanced vision and airport moving map displays to achieve equivalent levels of safety and performance to existing low visibility operational requirements. The work has the potential to better enable NextGen by perhaps providing an operational credit for conducting safe low visibility surface operations by use of the flight deck technologies

    Evaluation of a Head-Worn Display System as an Equivalent Head-Up Display for Low Visibility Commercial Operations

    Get PDF
    Research, development, test, and evaluation of fight deck interface technologies is being conducted by the National Aeronautics and Space Administration (NASA) to proactively identify, develop, and mature tools, methods, and technologies for improving overall aircraft safety of new and legacy vehicles operating in the Next Generation Air Transportation System (NextGen). One specific area of research was the use of small Head-Worn Displays (HWDs) to serve as a possible equivalent to a Head-Up Display (HUD). A simulation experiment and a fight test were conducted to evaluate if the HWD can provide an equivalent level of performance to a HUD. For the simulation experiment, airline crews conducted simulated approach and landing, taxi, and departure operations during low visibility operations. In a follow-on fight test, highly experienced test pilots evaluated the same HWD during approach and surface operations. The results for both the simulation and fight tests showed that there were no statistical differences in the crews' performance in terms of approach, touchdown and takeoff; but, there are still technical hurdles to be overcome for complete display equivalence including, most notably, the end-to-end latency of the HWD system

    SYNTHETIC VISION ENHANCES SITUATION AWARENESS AND RNP CAPABILITIES FOR TERRAIN-CHALLENGED APPROACHES

    No full text
    The Synthetic Vision Systems (SVS) Project of Aviation Safety Program is striving to eliminate poor visibility as a causal factor in aircraft accidents as well as enhance operational capabilities of all aircraft through the display of computer generated imagery derived from an onboard database of terrain, obstacle, and airport information. To achieve these objectives, NASA 757 flight test research was conducted at the Eagle-Vail, Colorado airport to evaluate three SVS display types (Head-Up Display, Head-Down Size A, Head-Down Size X) and two terrain texture methods (photo-realistic, generic) in comparison to the simulated Baseline Boeing-757 Electronic Attitude Direction Indicator and Navigation / Terrain Awareness and Warning System displays. These independent variables were evaluated for situation awareness, path error, and workload while making approaches to Runway 25 and 07 and during simulated engine-out Cottonwood 2 and KREMM departures. The results of the experiment showed significantly improved situation awareness, performance, and workload for SVS concepts compared to the Baseline displays and confirmed the retrofit capability of the Head-Up Display and Size A SVS concepts. The research also demonstrated that the pathway and pursuit guidance used within the SVS concepts achieved required navigation performance (RNP) criteria

    Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations

    Get PDF
    NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts

    Flight-Deck Technologies to Enable NextGen Low Visibility Surface Operations

    Get PDF
    Many key capabilities are being identified to enable Next Generation Air Transportation System (NextGen), including the concept of Equivalent Visual Operations (EVO) – replicating the capacity and safety of today’s visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a “Better-Than-Visual” operational concept. This operational concept envisions an ‘equivalent visual’ paradigm where an electronic means provides sufficient visual references of the external world and other required flight references on flight deck displays that enable Visual Flight Rules (VFR)-like operational tempos while maintaining and improving safety of VFR while using VFR-like procedures in all-weather conditions. The Langley Research Center (LaRC) has recently completed preliminary research on flight deck technologies for low visibility surface operations. The work assessed the potential of enhanced vision and airport moving map displays to achieve equivalent levels of safety and performance to existing low visibility operational requirements. The work has the potential to better enable NextGen by perhaps providing an “operational credit” for conducting safe low visibility surface operations by use of the flight deck technologies

    Toward Head-Up and Head-Worn Displays for Equivalent Visual Operations

    Get PDF
    A key capability envisioned for the future air transportation system is the concept of equivalent visual operations (EVO). EVO is the capability to achieve the safety of current-day Visual Flight Rules (VFR) operations and maintain the operational tempos of VFR irrespective of the weather and visibility conditions. Enhanced Flight Vision Systems (EFVS) offer a path to achieve EVO. NASA has successfully tested EFVS for commercial flight operations that has helped establish the technical merits of EFVS, without reliance on natural vision, to runways without category II/III ground-based navigation and lighting requirements. The research has tested EFVS for operations with both Head-Up Displays (HUDs) and “HUD equivalent” Head-Worn Displays (HWDs). The paper describes the EVO concept and representative NASA EFVS research that demonstrate the potential of these technologies to safely conduct operations in visibilities as low as 1000 feet Runway Visual Range (RVR). Future directions are described including efforts to enable low-visibility approach, landing, and roll-outs using EFVS under conditions as low as 300 feet RVR
    corecore